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The libron wave spectrum at zero wave vector for solid hydrogen in the Pa3 and C,mm

structures is calculated at zero temperature.
interactions between molecular quadrupole moments are treated perturbatively.

Interactions other than the electrostatic

Com-~-

parison of our numerical and analytic results for libron frequencies and Raman intensities

with the observed Raman spectrum gives strong evidence for the Pa3 structure.

The

scaling relation between the frequencies of the classical and quantum-librational systems
is found to hold for the Pa3 but not for the C,,,, structure. The effects of zero-point
librations and libron-libron interactions are studied to lowest order in 1/z, where z is the

number of nearest neighbors.

Although the static effects are quite small, the shifts in the

libron frequencies due to these interactions are of order 15%.

I. INTRODUCTION

The problem of understanding the cooperative
nature of the orientational state of solid hydrogen®
has been the object of a number of studies, both
experimental and theoretical. In spite of this
work, although many aspects of the ordering of the
molecular axes are now well understood, others
remain unexplained. Yor instance, it is quite clear
that the elementaryexcitations are libron waves2™’
and yet the details of the crystal structure of the
ordered state, e.g., the size of the “magnetic”
unit cell, remain unclear. In this regard, thermo-
dynamic measurements are not very informative
because the bulk properties of solid hydrogen do
not depend sensitively on the precise way in which
the ordering of molecular axes takes place. To
resolve this structural ambiguity, resonant mea-
surements such as optical experiments or neutron
or x-ray spectroscopy are more helpful,

For instance, Hardy et al.” have shown that the
undistorted Pa3 structure is not entirely consistent
with the Raman spectrum of solid H, and D, at
nearly 100% concentration of (J= 1) molecules.

Nor were they able to find a distortion® which would
explain all their data. More recently, James has
suggested® that there may be a temperature range
just below the ordering temperature where a dif-
ferent structure is thermodynamically stable., Ac-
cording to Hardy, !° the symmetry of space group
C,mm (see note added in proof in Ref. 27) proposed
by James is consistent with the optically observed
(J=0) - (J= 2) rotational excitations. Accordingly,
it seemed important to calculated the libron spec-
trum and associated Raman intensities for this
structure. If, as is usual, one assumes that the
electrostatic quadrupole-quadrupole (EQQ) inter-
actions dominate the orientational interactions,
then the resulting libron modes do not at all agree
with the observed Raman spectrum. Allowing for
the possibility of more general interactions does

2

enable one to fit the frequencies of the Raman
spectrum, although even then, the intensities do
not reproduce the observed spectrum very well.
Thus, in order to explain the Raman spectrum it
is necessary to postulate (i) very-large non-EQQ
interactions and (ii) structural distortions suffi-
ciently large as to alter considerably the intensity
ratios. Since these possibilities, when taken to-
gether, seem improbable, and since the neutron-
diffraction data!' are consistent with the Pa3 struc-
ture, we conclude that the C,,,,, structure is not
actually realized.

We should also point out that lately other indica-
tions have become apparent which disfavor the
C.mm Structure. For instance, James’s original
proposal was based on considering nearest-neigh-
bor interactions only. More recently, however,
he finds'? that inclusion of further-neighbor inter-
actions renders the C,,,, structure thermodynami-
cally unstable relative to the Pa83 structure. This
tendency is also apparent from our libron-wave
calculations. Second, more detailed calculations
of Hardy et al.'® show that although the symmetry
of the C,,,., structure is consistent with the ob-
served four-line spectrum corresponding to the
(J =0)-(J =2) transitions, the actual absorption
spectrum does not agree qualitatively with theory.
On the basis of these two calculations, together
with those presented here, it is quite clear that the
structure of solid hydrogen is not of the type C,,um.

A secondary objective of this paper was to for-
mulate the problem of libron-libron interactions in
a systematic way. This can be done in close anal-
ogy with the problem of interactions between spin
waves in an antiferromagnet, *#'* Although the re-
sults of the various calculations® 3418 of zero-
point effects on the thermodynamic properties do
not agree with one another exactly, they do indicate
that these effects are small. One might expect,
similarly, the effect of zero-point motion on the
excitation spectrum to be small. We have studied
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these effects using the 1/z expansion and find sur-
prisingly large, e.g., of order 15%, dynamical
corrections to the average libron energy due to
zero-point motion., In view of these results, we
are pursuing more detailed calculations to obtain
the energy shifts of the individual libron energies
due to zero-point effects. Furthermore, the pres-
ence of strong libron-libron interactions undoubted-
ly plays a crucial role in the broadening observed
in the highest-energy libron mode. "

Briefly, this paper is organized as follows. In
Sec. II, we study the equations of motion for non-
interacting librons. We show that the dynamical
matrix can be reduced to dimensionality 2s under
rather general assumptions about the lattice struc-
ture, where s is the number of sublattices. Our
results for the Pa3 structure agree with those of
previous authors. 2-° In Sec. III, we derive for-
mulas for the intensities of the Raman scattering
spectrum, based on the polarizability approxima-
tion. ! In Sec. IV, we investigate the effect of
zero-point motion on both the thermodynamic prop-
erties and the libron energy gap. The effect on the
thermodynamic properties ic small. In contrast,
the effect on the libron energy spectrum is quite
significant. In Sec. V, we discuss our numerical
and analytic results for the libron frequencies and
Raman intensities for both the C,,,., and Pa3 struc-
tures. As mentioned above, our results strongly
favor the Pa3 structure. In Appendix A, we clarify
the relationship between the libron spectrum of
quantum and classical !® systems. Although the
frequencies are proportional for structures of high
symmentry such as the Pa3, the relationship'® is
not the usual equivalence between the problem of
small oscillations in the classical and quantum
limits. Finally, the interaction coefficients ¥}
defined in Eq. (9), below, are tabulated in Appen-
dix B assuming nearest-neighbor EQQ interactions
only.

II. HAMILTONIAN AND EQUATION OF MOTION FOR

LIBRONS
A. Discussion of Model

In this section, we shall give a rather general
discussion or the equation of motion for libron
waves in solid hydrogen. Although it is usually
supposed that the dominant interactions between
molecules in the solid are those between the elec-
tric quadrupole moments of the molecules, 20 we
shall consider the most general pairwise interac-
tions consistent with the symmetry of the diatomic
molecules and the lattice structure of the solid.
Since the energy gap between successive rotational
kinetic-energy levels dominates the orientational

" interactions in the solid, the rotational angular
momentum J; of the molecule at the lattice site
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R; is a good quantum number, and at low temper-
atures J; =0 or J; =1 depending on the nuclear spin
of the molecule. Accordingly, in the expansion of
the static intermolecular potential in spherical
harmonics Y¥(®,), where Y¥ is the spherical har-
monic in the phase convention of Rose, ! and &,
denotes the pair (6¢; i cp“) of spherical coordinates
of the orientation of the ith molecule relative to a
(_;‘_uanuzatmn axis parallel to R, j» where we write
R;; =R; - R;, and it is only necessary to consider
terms mvolvmg Ya or Y0 The latter appear in
“single-molecule” terms which have been shown
by Nakamura to vanish in a rigid cubic or hcp lat-
tice.® Thus, without loss of generality, we may
consider the interaction between molecules to be
effectively of the form

Ziy%y YM (w;) Y‘;"(wj)* (1)

where the a, are constants obeying the relation
ay=a*y and €(R;;) is a function of the intermolec-
ular separation. It is convenient to rewrite Eq.
(1) in the form suggested by Van Kranendonk??:

5= L e (Ryy)a,C(220; M- M)
J=0,2,4 M

xY¥(5,) V3" (0),), (2)

where C(j,727s; my, m,) is a Clebsch-Gordan coef-
ficient, ?! €, (R,;) measures the strength of the
coupling into a resultant total angular momentum
J, and the constants a; are a,=(70)'/?, a
=(1)"2, and %:(5)1/2.

Accurate theoretical predictions of the constants
€, and €, have not been performed up to now, al-
though a rough idea of their magnitude can be ob-
tained from the work of Margneau® and deBoer. 2
Since there have been no experimental determina-
tions of either €, or €, to confirm these estimates,
we shall consider these parameters as being ad-
justable. As pointed out by Nakamura, 2° however,
they are probably dominated by the EQQ interac-
tions which contribute exclusively to €,(R). Ne-
glecting other contributions to €4(R), we may write

54(R) = (%‘Eoro) (RQ/R)S, (3)

where R, is the nearest-neighbor distance and I’y
is the EQQ coupling constant

Ty =(6e%Q2/25R3), v (4

3;; =4me(R;;) 2

where eQ is the molecular quadrupole moment.
The values of I'y given in Table I agree fairly well
with the experimental determinations of T’y as is
discussed in Refs. 6 and 25. Of course, there are
several many-body effects which modify the EQQ
interactions when an isolated pair of molecules is
placed in the solid. The principle effects are® (i)
static phonon renormalization, (ii) dynamic phonon
renormalization, and (iii) screening effects.
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TABLE 1. Values of the interaction coefficients.

Equation Parameter Hy ) Dy
Calculated
@) T2 0.698 cm~! 0.839 cm~!
(4) T 1.005°K 1.206°K
6 Ese 0.96 0.95
(6)  £un 0.75-0.80 ~0.80
(5) & 0.72—0.77 ~0.76
(68d) £, 0,814 0.814
(71) ¢ ~0.62 ~0.63
Deduced from the Raman spectrum
(71) & 0.69 0.76

2For a detailed discussion of the values of Ty, see
Ref. 25

"See Ref. 25.

°This estimate is obtained by combining the dynamic
phonon renormalization of I' in Ref. 25 with the static
renormalization in Ref. 26. The latter is itself the
result of two types of effects, viz., short- and long-
range correlations. For D, it is clear that long-range
correlations are less important than for H,.

These are taken into account by the renormaliza-
tion factor £, in Eq. (3), and we may write

(5)

S0=Emscrs

where £, pertains to the phonon effects and &g,

to the screening corrections. The best theoretical
values of?>% these constants are listed in Table I.

Since the effects of libron-phonon interactions are

perturbative and can be handled in a separate cal-

culation, we shall neglect them and treat solid hy-
drogen as a rigid lattice.

B. Libron Hamiltonian

Let us write Eq. (2) in terms of a quantization
axis arbitrarily fixed with respect to the crystal
axes:

Jcij:477 Z/ E €J(Rij) oy [477/(2J+ 1)] 12
Jmm'
xC(22d; m, m") YI(Q;)
XYE(Q) Y™ (2,)%. (6)

Here Q; and ;; specify, respectively, the orienta-
tion of the axis of the ith molecule and that of the

intermolecular axis R;;, both relative to the ar-
bitrarily fixed quantization axis.

Following Raich and Etters, * we transform to a
coordinate system in which the z axis for each
molecule lies along its equilibrium orientation.
This direction coincides with the direction of low-
est energy for the 7th molecule in the classical
ground state, ?” Thus, the state when all the mole-
cules have J,=0 is analogous to the Néel state of
antiferromagnets. We have

Y5() =2 D (x)* Y7 (;), ()
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where D$2)(x;) is a rotation matrix, * where
y;=(a;, B;, v;) is the triad of Euler angles® spec-
ifying the orientation of the local equilibrium axes
with respect to the arbitrarily fixed quantization
axes introduced in Eq. (6), and w;=(6;, ¢;) de-
scribes the orientation of the i{th molecule relative
to its local equilibrium axes. With these substitu-
tions the Hamiltonian can now be written in terms
of spherical harmonics referred to the local axes
as

=22 2y oror, (8)

ij mm’

where

Y?]:m'z 4nAmAm’ 2 €J (R1])aJ[7T/(2J + 1)] /2
J

X253 C(22J;n,n") D) (y,)*

'

XD () YT ()%, (9)

and following the notation of Raich and Etters*:
Ag=—15(5/m1/%, (10a)
A,y =5(30/m12, (10b)
A,y =—~H(30/m/2 (10¢)

and

09 =-$(3 cos?; - 1), (11a)
0% = - 5cosf; sinb; e*i¥ (11b)
0% =~ () sin®,; e***%i , (11¢)

The present discussion can be applied to any sys-
tem of diatomic molecules governed by a Hamil-
tonian of the form Eq. (2). In particular, for
molecules other than hydrogen one has B <7w,,
where 7w, is a typical libron energy and B is the
rotational constant [rotational kinetic energy
=BJ (J+1)], so that J; is no longer a good quantum
number. For such a system in the quantum low-
temperature regime (kp T <7w,) the libron fre-
quencies coincide with the classical frequencies of
small oscillation. Accordingly, in Appendix A we
derive the equations of motion for librons in a
classical system!® and clarify the relation between
the quantum-mechanical systems where J; is a
good quantum number and classical systems (i, e.,
those where J; is not a good quantum number).
Contrary to the general problem of small oscilla-
tions, these two systems are only equivalent for
lattice structures of sufficiently high symmetry.
In particular, we find that the scaling relation be-
tween the frequencies of the two systems hold for
the Pa3 structure but not for the C,,,,, structure.
We now return to the case when J; is a good
quantum number, as applies to solid hydrogen. At
first we shall treat the case when all molecules
have J =1. Within the (J = 1) manifold it is con-
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venient to use the operator equivalents introduced
by Nakamura, 2

09=3(J,;)%- 2, (12a)
iﬂ :Jzi J*i +J*i Jzi ’ (12b)
0%=(J,;)3 (12¢)

where J,; =J,;+iJ,;. We wish to describe libron
excitations assuming there are few such excitations
present. Experimentally, 2%%° it is known that even
at the transition temperature this assumption is a
good one. Consequently, we expand about J,; =0.
Previous authors®® have generated such an expan-
sion in various ways. For instance, Raich and
Etters? introduce operators to simplify the Hamil-
tonian, but these operators are not exactly boson
operators, so there are kinematic complications.
In this connection it is interesting to note that for
magnetic systems the correct behavior at low den-
sity of excitations out of the ground state is most
readily recovered using diagrammatic methods.%-%
For such calculations the simplest formalism uti-
lizing pure bosons is not the Holstein- Primakoff3®
transformation, but rather the Dyson-Maleev®?:®
transformation. Although the latter leads to a for-
mally non-Hermitian Hamiltonian, this circum-
stance creates no difficulties. Accordingly, in or-
der to treat libron-libron interactions, we shall
use this type of formalism. Thus, we take

0%=3ala, + 3616, - 2, (13a)
0}=2[a] - (1-ala;—bb:)b, ], (130)
0;i'=v2[(1- ala; - b]b;)a; - b ], (13¢)
0%=241b,, (13d)
0;2=2a;b]. (13e)

In terms of these operators the Hamiltonian be-
comes

6
30=Eq+3o+ 24 V,, (14)
n=3
where E, is the Hartree ground-state energy, V, is
the perturbative term involving » boson operators,
and JC, is the unperturbed Hamiltonian quadratic
in the boson operators:
seo=— 1227 ¥ (af a; + b{b;) +225 [y (af-b,)
ij i
(af = b))+ i) *(ay - 0]) (@ =5)
+viyMai = by)(a; = b)) + (g, - B])

x(a} - b,)]- 82 yfalb, + 4§D *a;0]].  (15)
i
Note that the linear term in the boson operators

vanishes as a result of the assumed stability of the
Hartree ground state. The terms V3 and V, are
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given in Sec. IV where we consider the effects of
libron-libron interactions. Since V5 and Vg lead

to higher-order effects, we shall not consider them
explicitly. The analysis of the excitation spectrum
and thermodynamic properties can now be carried
out in the usual way for a low-density Bose gas.

In so doing, however, one tacitly assumes that the
replacement of angular momentum operators by
boson operators does not lead to significant errors
due to the introduction of unphysical boson states.
It is generally agreed that this assumption is a
good one for the Heisenberg model of magnetic
systems, 30 and we would expect it to be even better
here, because of the presence of a large energy
gap in the excitation spectrum.

The system we are considering is quite analogous
to an antiferromagnet in that the zero-point devia-
tions from the Hartree (Néel) state are small. Ac-
cordingly, the logical expansion parameter is the
density of such excitations p(7), and we expect to
express quantities as seriesin the two parameters!®
p(0) and p(T) - p(0). Here, the thermal density of
deviations p(T) — p(0) is of order exp(- A/kyT),
where A is the average libron-energy gap and the
zero-point density of deviations p(0) is of order
1/z, where z is the number of nearest neighbors,
or better, the cube of the range of the interaction.
The appearance of 1/z as an expansion parameter
is an indication of the fact that the molecular field
becomes exact in the limit z—~e. The 1/z expan-
sion for an antiferromagnet is described in Ref.

15 and is considered in more detail for the present
problem in Sec. IV. In the remainder of this sec-
tion we shall confine the discussion to the treat-
ment of the quadratic Hamiltonian 3C.

C. Equation of Motion for Librons

The first step in the calculation is to determine
the approximate normal modes from the quadratic
Hamiltonian 3C4. In this connection we note that
exact diagonalization of ¥C, is virtually equivalent
to the linearized equations of motion and , as is
discussed in Appendix A, the resulting frequencies
correspond (at least for the Pa3 structure) to the
classical frequencies of small oscillations. Note
that the additional approximation of keeping only
those terms which conserve the total number of ex-
citations [this “truncated” linear approximation
is obtained by neglecting the terms in F’ in Eq.
(18), below] does not correspond to the classical
problem of small oscillation (unless one eliminates
displacements in certain “hard” directions). Thus
it is not the “linear” approximation in the usual
sense, e.g., inthe sense of the linear theory of
antiferromagnetic spin waves. There, keeping
only the number conserving terms in the boson
Hamiltonian leads to the dispersionless molecular-
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field spectrum. We shall carry out the linear
treatment here and shall evaluate approximately
the lowest-order perturbation-theory corrections
to the excitation spectrum in Sec. IV. A complete
lowest-order calculation should be quite accurate,
since corrections are of higher order in 1/z.

In Eq. (15), it is convenient to introduce the fol-
lowing Fourier transforms:
5

ag (K) =N‘”zj,(s/) aysy expl- ik - R, ], (16a)

by (K) =N"1/2 .(_7;) bies, expl- ik - R4, ], (16b)
J

Vas(®) = %:4) Ve i) expi= K - [Riqa) - ﬁjm)]},

' (16¢)
where a and 8 label the sublattices (a=1,...,s,
where s is the number of sublattices) and N is the
number of unit cells, so that there are sN mole-
cules in all. The sums in Eq. (16) are taken over
all molecules 7 on a particular sublattice 8. It
follows that

Vg () =y mE)* . (17)
In terms of these Fourier transforms Eq. (15) be-
comes
3Co= EZ [ad,, cl&)e (&) +bo,,cLE)c, (k)
+F,,,,(l'<')CJ(E)C,,(E)+§F,fu(l?)CL(E)cI(_k’)
+3F,, ®)* c,®)c,(-K)], (18)

==12 25 7235(0)  b=-8 3572 (0).

For the Pa3 structure with only nearest-neighbor
EQQ interactions, a=19T;. We shall assume that
the different sites within the unit cell can be ob-
tained from one another by rotations, in which case
a and b are the same for all sublattices. Also we
have introduced the operators c,(k) which are de-
fined by

c &) =a,&), 1<a<s (192)
Cora(B) =b,(K), l<a<s (19b)

where

and the (2sX2s) dimensional matriceso, F, and F”:

o =(§ -g) , (20a)
F- ({g;”f*), (20b)
F'= (%jJé*) ’ (20c)

~ here I is the (s Xs) unit matrix and J and g are
Aso (sXs) matrices defined by
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Fap(R) =491 (%) (21a)

Zap(K)=49%, (K) . (21b)

In the linear approximation, i.e., treating 3Gy
exactly, the normal modes are obtained from the
equation of motion,

[eu (K), 5] =ac,(K)+b2,0,,c, (k)

+ P (R)e, @) +FL, (B)ef(-R)] ,  (22a)
[el(=k), 3]=-ac} (-K)-b2,0,,c} (- &)

= 2 [Fu, (R)* el (=K)+F., (K )*c, (K)], (22b)
where we have used the fact that the matrix F is
Hermitian and F’ is symmetric. In order to sim-
plify the equations of motion we make use of the

following relations between the matrices F and
F’:

F'og=-F, (23a)
g F'==F*, (23b)
The equations of motion now become
[c. (&), 3¢]) =2,[ab,, +bo,, + F,, (&)] ¢, (K)
-2, Fu, R)EN-K), (24a)
[CL(-K), 3¢] == 23, [ab,, + b0y, + F,,(K)] €} K)
+22, F oK) ¢, (B), (24b)
where ¢)(&)=2, 0., c! (k). (25)

Taking linear combinations of Eqs. (24a) and (24b)
we find that

He, ®) + e} (=)}, 5¢,]
=23, lad,, +bo,, +2F,, (&) e, ®) - 21 (- B)},(26a)
{e,®) -2} (-8}, 5e,]
=23, [adu, +bo,, e, ®) + &1 (- K)}, (26D)
and thus that
[{ec.®) - c)(-K)}, 5€ol, 5(30]=g3 [ab,, + b0, ]
x[as,, +bo,, + 2F,, ®)] {c, ®) - &l=K)}. (29

From Eq. (27) we conclude that the square of the
eigenfrequencies w? can be found by diagonalizing
the matrix, [af +b0 | [al +bo+2F]:

ntel=(al+b)(al+bo+ 21)],, 29

where the subscript u denotes any eigenvalue of
the matrix,
For the cases we consider in this paper, we have

[F, bo] =0, (29)
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TABLE II. Libron energies at k=0 in the Pa3 structure.
Experimental® Theoretical®
Nearest-
neighbor EQQ All-neighbor EQQ interactions,
interactions nearest-neighbor non-EQQ
H, D, only® interactions®
6.1+0.5 cm~? 8.8+0.5 cm™? 10.4T (2) 13.7T)—2.0€,+11.4¢, (2)
7.9£0.5 11.4£0.5 14.3T, (3) 17.70(~6.9¢,+ 4.9¢, (3)
14.8+£1.0 21.2+1.0 26.2T (3) 29.0T(+0.0le,+3.1e, (3)

®Data are taken from Ref. 7. As discussed there, the two middle-frequency lines are combined for comparison with

theory.
PTheoretical degeneracies are shown in parentheses.
“Results agree with those of Refs. 3~5.

YResults are perturbative and are valid when €y/Ty and €,/Ty are much less than unity. The results for EQQ inter-

actions only were given in Ref. 6.

i.e., for the Pa3 structure 5=0, and for the C,,,,,
structure F(k=0) is real. Since all the matrices
commute, we can treat them as ¢ numbers, i.e.,
they are simultaneously diagonalizable. Thus,

we may rewrite Eq. (28) as

(rw,)?=[(al+bo+F)>-F2],. (30

If we denote by « the unitrary matrix which diag-
onalizes the commuting matrices a I+bo+F, and
_F, then we may write

2“Tw[aﬁuv'*‘bouu"‘Fuv]uuA:gpéph (31a)
uy
Zu,”ipFu,,u” =="M,001, (31b)

Ky

and if we define operators d, () and d,f (- K) by

d,®) =2, u¥, (&) c, (&), (32a)

dj(-K)=2, uf, &) cl(~K), (32b)
then Egs. (24a) and (24b) become

(4, (B), 5€o] = £, du®) +n,d,i (- K), (332)

[d}(-K), 3¢o) == £, (-K) = 7n,d, (®). (33b)

Finally, we perform the Bogoliubov transforma-
tion® to the elementary excitation operators of the
system f,(K) and £ [ (-k):

d,(K) =a,K)f, &) +B,@E)FH~K), (34a)

d} (- K)=B,E&)f (&) + o, ®)F] (- K), (34b)
where

a,®)=[(&, +7w,) /27w ]2, (35a)

BuE) == [(&, - w,)/2me, ]V2, (35b)

w, = (&2 -n2)/2, (35¢)

We have carried out numerical and analytic cal-
culations of the libron spectrum at zero wave vec-
tor for both the Pa3 and C,,,,, structures. As
previously noted, ® it is very important to include
the effects of next-nearest-neighbor interactions.
In Tables II and III, we give our results, including
all-neighbor interactions as well as those for
nearest-neighbor interactions only, for compari-
son, Since the EQQ interactions are dominant, we
have included the other interactions perturbatively,

TABLE III. Libron energies at 2=0 in the C,,,, structure.
Experimental® Theoretical®
Nearest-
neighbor EQQ All-neighbor EQQ interactions,
interactions nearest-neighbor non-EQQ
H, Dy only interactions®
6.3+0.5 cm™! 8.8+0.5 cm~! 12.6T, (2) 7.9T=3.6€,+ 1.4¢; (2)
10.8+0.5 14,4 0.5 24,87 (1) 20.2T(—4.8€,+11.2¢y (1)
14.8+1.0 21.2+1.0 33.6T (1) 28.5T) +3.8ey+ 3.8¢( (1)

2Data are taken from Ref. 7.
with theory.
PTheoretical degeneracies are shown in parentheses.

As discussed in the text, the two lowest-frequency lines are combined for comparison

°Results are perturbative and are valid when €,/T'; and €3/T' are much less than unity.
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obtaining the results given in the last column of
Tables II and III. Finally, it should be emphasized
that the relatively large effects of zero-point
motion, performed in Sec. IV, are not included in
these tables. We shall discuss the significance of
these results in Sec. V, where we compare the
calculations of both the libron frequencies and the
Raman intensities with the observed Raman spec-

tra.
[I1. FORMULA FOR RAMAN INTENSITIES

In this section, we shall calculate the Raman
scattering amplitudes using the polarizability ap-
proximation. *” That is, we shall assume that the
polarizability of the solid can be expressed as the
sum of molecular polarizabilities @ (i):

@ =2, a), (36)

wherea(i) is the polarizability tensor of the mole-
cule situated at lattice site {. The interaction of
the electromagnetic field with the system can then
be written in the form

=30, B - a6) - E, (37)
where E is the externally applied oscillating elec-
tric field.

It is convenient to rewrite Eq. (37) in terms of
spherical componen‘cs21 as
Jclnt:%Z 2 c(112; “, v)
i wy
xa, (i)*E,E, +5 ¢ E%, (38)
where a‘?(i) is a second-rank tensor with com-
ponents

Olig) :%(axx"' A,y * 2i axy)’ (393.))
ag):q:(axziiayz)} (39b)§
aéZ) = (6)-1/2(20132 -y = ayy)’ (39C)

and a@ is defined as
a:%(axx+ayy+azz)' (40)‘

The second term of Eq. (38) will not contribute to
the phenomenon of interest and will henceforth be
neglected. In Eq. (38) the spherical components
of the tensors are referred to an arbitrary set of
axes, which we take as the crystal axes and which
we refer to as ¢. Since the expression for the
polarizability tensor assumes its simplest form
when referred to an axis fixed in the molecule,
viz., the principal axis 7##, we write

a¢(>2)(i)5 =$-:x D;ﬁza) (o , Bi ;7;')* 0‘752)(7:)?. > (41)

where a? (i) is the polarizability tensor for mole-
cule 7, the outermost unit-vector subscript in-
dicates the quantization axis, and («;, B;,y;) are
the Euler angles specifying the orientation of the
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principal axes relative to the crystal axes. Now
a? (4 ); is nonvanishing only for A =0:

al®(i)g = 659 (@, — @, ) (§)1/2
= 6,0(6)'/2Ka, (42)

where K is the anisotropy of the polarizability.
Thus Eq. (41) becomes

a$®(i)s = (6)"2Ka D (ay, B;,v;)*
=(81/15)123Ka Y58, a;). (43)

In order to find the change in the polarizability
as the molecule rotates due to libron excitations, it
is convenient to express @ in terms of coordinates
referred to the orientations in the Hartree ground
state. Using the rotation matrices D{2> we may

rewrite Eq. (43) as
a?(i); = 3Ka (& m)' /2
er Dgzy) )* vy (w;), (44)

where w; specifies the orientation of molecule
relative to its equilibrium value, and y; are the
Euler angles specifying the equilibrium orientation
for the ith molecule relative to the crystal axes.
This result enables us to write the interaction
Hamiltonian of Eq. (38) as

3Cynt = SKE(;%w)I/a
X Z EC(IIZ;u, V)DAS2+L.1 (xi(a))

ila),a uva

XY (w;00))  E(i(a) E, (i (), (45)

where E (i (@)) is the uth component (referred to

the crystal axes) of the externally applied electric
field at the position of the molecule in the ith unit
cell and on the ath sublattice.

The process we are considering is the following™
A photon of wave vector kK and polarization 7 im-
pinges on the system and an emitted photon of wave
vector K’ and polarization 7’ is observed. Asa
result, a libron of wave vector =K—E’ and in the
branch ¢ of the libron spectrum is created in the
system. The electric field can be written in terms
of photon creation and annihilation operators ag, .
and og, . as®

E(F, 1) =i @rnw; , /2V)V2E(, 7)
k7

X{ai T exp[z(E ‘T- wf,'rt)]
_a%,-r exp[-—i(ﬁ-i"-— Ct)',;',.t)]}, (46)

where € (K, 7) is the unit polarization vector de-
scribing the photon mode of wave vector K and
polarization 7 with

k.e(®,7)=0. (47)

The calculation of the Raman intensities at es-
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sentially zero temperature requires the determina-
tion of the matrix element |{f13¢ | i)| where the
initial state |i) is that state with one photon in the
mode (K, 7) and no librons; the final state |f) is
that state with one photon of mode (K, 7/) and one
libron with wave vector q and of branch ¢.3® De-
noting the relative intensity of an excitation of a

(4, o) libron by I,, we find that

L=2 2 2% X % o1z,

aB i(a) jB) wvw'v’ T’

x c(112; ¢, v)e, (K, 1) e, &', T")
X €&, )%, ®,7)* DL, \Kica))
XD;ZL‘ MRy (Xj(s))*,exp[i ®-Kk"). (ﬁuw'ﬁj(m)]

X€0| Y3 (w;0) |, 0) @, 0| Y (w;4))* |0,

(48)
where |0) is the state with no librons and |, o) is
a state with one libron of wave vector § in the ¢
branch. The sum over 7 and 7’ arises from aver-
aging over initial photon polarizations and summing
over final photon polarizations, Here €,(k, 7) is
the uth component (referred to the crystal axes)
of the polarization vector € (8, 7). Using Eq. (47),
we may write
Yo B, T)ep®, T)*e, () T €, (K, T

TT!
(6,0 -k 2516, - B R, (49)

where % and %' are unit vectors in the direction
of the incident and scattered photons, respective-
ly.

The expression for the intensity is greatly
simplified if the sample used is a powder, as we
shall now assume., To facilitate the calculation
we use the fact that the spherical components of a
unit-vector transform under rotations as a first-
rank tensor.? Hence, we can write

~r

Pl=2,D8 )" &, (50)

where £l, is the vth component of 2’ with respect
to an axis fixed in the laboratory frame and y de-
notes the Euler angles of the laboratory frame

with respect to the crystal axes. For convenience
we take the laboratory frame to have its z axis
along the direction of the incident photon. Denoting
powder averages by (- - - ),,, We write

Gl = L DL 6)* DL (e £ £+ (1)
We have?! ;
DDG)* D X ey = QT+ 1)718,, 8,50 8590, (52)
which yields the obvious result

G APIES 1.3 (53)
Similarly, we may write

(R AR "“'*>av~a>“ E bR ElE X
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XD () DB (%) DY () D) () s

(54)

where %' and E' refer to the scattered photon.
Using the Clebsch-Gordan series and Eq. (52) we
find that

B ROy s =00y, weyr iy (2 + 1)1
XC(11J; u, v) c(11d; ) v’
xX, C(117;0,p)?| £! |2, (55)

These results enable us to write the relative inten-
sities in the form

I,=C° 2 %

W aB ia) i(B)
X(@ 0| V3 (wia)*[00€0] V5 (w50 [T, 0
xexpliq - Ricq) ‘ﬁm))], (56)

Du (‘*’aa )*

where w,g are the Euler angles specifying the
equilibrium axes of molecules on sublattice 8 rel-
ative to the equilibrium axes of molecules on sub-
lattice @, and C° is a weak function of the angle
between % and k’. The matrix elements

(01 Y} (wygy) 19, 0) are found by expressing Y} (w;(s,)
in terms of the excitation operators f, and f; of
the system. Thus we arrive, finally, at the ex-
pression for the Raman intensities in terms of the
eigenvectors of the dynamical matrix:

Ic :(Ol - Bu)a
x), 2, D&

=My =m’
py mym®=+1

(W, )* UMM - (57)

Here the subscripts u and v are summed over the
range (1, s) and o is the mode index 1< o< 2s.
Also U'™ is the (sX2s) rectangular array defined
by setting

= < g:-lx))) . (58)

IV. ZERO-POINT MOTION AND LIBRON-LIBRON
INTERACTIONS

In this section, we shall discuss the effects of
zero-point motion and libron-libron interactions.
The diagrammatic formulation of perturbation
theory which we shall use is that due to Bloch and
deDominicis.®" From their formulation, it is
quite apparent that for each hole line in any dia-
gram there corresponds a Bose factor which is
approximately

o(T) = p(0) = [exp(A/k 5 T) — 1]

where A is the average libron energy gap. This
factor is quite small and hence, except perhaps
very near the transition temperature, these tem-
perature-dependent terms will be dominated by the
zero-temperature effects.
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To study these effects we need consider only di-
agrams with no hole lines. We shall further sim-
plify the calculations through the use of the 1/z
expansion,'® where z is the number of nearest
neighbors. Formally, this expansion is generated
by taking the unperturbed Hamiltonian to consist of
the molecular field terms in 3G, i.e., those terms
diagonal in the number of excitations. We write
these terms as

Hoo=Ttwy 22; (afa; +b]b,), (59)

where 7iwy=19T"y= E,, and is considered to be of
order z, because z nearest neighbors contribute to
this field. (In a more refined calculation 7w,
should include the effect of further-neighbor inter-
actions and of anharmonic shifts. As we shall dis-
cuss in a separate paper, these effects tend to can-
cel, and 7w, remains close to the unperturbed
value used here.) The perturbation then consists
of the quadratic “transfer” terms, the quadratic
“pair-creation” terms, and the higher-order an-
harmonic terms. Terms in perturbation theory
are classified according to their order in 1/z as
follows: As mentioned above, E,is considered to
be of order z; sums over n independent lattice
sites are considered to be of order z". Ordinarily,
one can infer the concentration dependence of per-
turbative contributions by similar reasoning. In
fact, it is easytosee that z and x always appear in
the combination (zx). This point of view is closely
related to that of Nakamura,'® and hence, our cal-
culation of the thermodynamic properties will be
abbreviated.

To calculate {0%), or equivalently, {ala;+b]b;)
at zero temperature, we use Feynman’s theorem
to write

-9F

Nsx{ala; +blb;) = 30y (60)

where F is the free energy. Hence, a calculation
of F to lowest order in 1/z will lead directly to an
evaluation of (0?). To lowest order in 1/z, only
the quadratic terms describing pair creation con-
tribute to the free energy at zero temperature.
Thus to lowest order in 1/z, the energy is that of
the linear theory, but our formulation is rather
simple in that summations over the Brillouin zone
are avoided. Using second-order perturbation
theory we find the free energy correct to second
order to be

F=—4NEsx®—- 8Nsx
x5 (i 12+ [ B) /mw, (61)

at zero temperature. Then Eq. (60) yields

(afa; +b]b,) =82 E 20, (|73 |2+ [y 1%, (62)

oo

in agreement with Nakamura’s result'® for x = 1.
The values of the coefficients y7} are discussed
and tabulated in Appendix B. Using the values of
Table VII, we obtain the numerical results, ne-
glecting the very small effects of further-neighbor
interactions,

F/(= §NEysx%) =1+0. 049x7, (63)

(1-3J2)=1-0.025x7%, (64)

Next let us evaluate the lowest order (in1/z) cor-
rections to the libron spectrum. Strictly speaking,
the perturbations to the libron spectrum are de-
scribed by the self-energy, =(K, o, w), where o
is the mode index and w the frequency, or, equiv-
alently, since we take the unperturbed Hamiltonian to
be diagonal in real space, (R,R’; 0,0’ ; w). The
off-diagonal terms in = due to the quadratic per-
turbations give rise to the dispersion in the libron
spectrum found within the linear theory used in the
main body of this paper. Here we wish to estimate
the effect of libron-libron interactions on the ex-
citation spectrum. For this purpose it is conve-
nient to neglect the dispersion of the linear libron
spectrum. In other words, we shall calculate only
the average over all modes and momentum space
of the energy shift due to lilgo_tl-libron interactions.
Thus, we shall calculate Z(R, R; 0, 0; w). By sym-
metry, this function is independent of both R and
0. The shift in the libron frequency Aw is then
obtained by evaluating = for w=wy:

aw =2 (R, R; 0, 0; w,). (65)

Since we are only interested in the effect of the
anharmonic terms, we wish to evaluate the lowest-
order terms in perturbation theory involving the cu-
bic and quartic anharmonic terms. Terms involv-
ing more than four operators can be shown to be of
higher order in 1/z. Had we not chosen the Dyson-
Maleev representation, we would have had to eval-
uate many more terms. The sum of all such extra
terms must vanish, of course. Such a cancellation
has been shown to occur in the antiferromagnet,
The restriction to diagrams with no hole lines
drastically reduces the number of terms one must
examine. For instance, only terms of the type
shown in Figs. 1(a) and 1(b) contribute to first or-
der in 1/z. Diagrams of the type shown in Fig.
1(c), where the quartic vertex conserves the num-
ber of particles, do not contribute at zero temper-
ature, because they require the presence of a hole
line.

For an explicit calculation we need to write down
the cubic and quartic perturbations. For the Pa3
structure, we have
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Vy=6v22 [y% (afa; +b]b;)(al~b,)
ij

+ M) *(ala; + b1b;)a;- b))

+4V22 [yB(al - b)alb, +yi2(a] - b;)a; b}

17
+ i * (a; - b])ad] + viy 2)* (a; - b])alb, ]

66
and (662)

V=92 y%(afa;+b1b;)(a) a;+b1b;)
i

+12 {i} 92 (al a; + b1 b)al b, + 6%2)*(al g
+b]b)a;bl]+4 gz bii(al-b:)aja; +b3b,)0,
- (7%})* (a; - bD(a}aj + b}bj)aj]

+a [0 (= b afa; +b]b )b,
ij

—yi N al-b;)(ala; +b1b,)a;]

+4 5 [v2alb,alb; + 0¥ a;bla;b]
i

w3 2alb; a0+ (Vi) * aiblalb;]. (66b)

Using these forms we find that

naw==- 16 E5' 2, {[9]+8}|%+ 2[ 715

ij

w2y 18- 13 [543 it 21, (6m)
where the terms in the first square bracket are
the contributions from the cubic terms of the type
shown in Fig. 1 (a), which we denote as 7Aw;_g,
and the terms in the second square bracket are
those from the quartic perturbations shown in
Fig. 1 (b), which we denote as 7Aw,.;. Using
Table VII, we find

2

ﬁAw3_3 = - 4. 46F0, (683.)
;iAw,,_g = 0. 94F0, (68b)
nAw=-3.52=-0.186E,. (68c)

For the pure (J=1) solid we can summarize our
calculation by saying that on the average, the ef-
fect of anharmonicity is to modify the linear spec-
trum by effectively replacing I'y by £, I'y, where

£por= (1-0.186)=0. 814 . (68d)

Let us make two comments about this result.
First of all, note that the expression in Eq. (67)
involves a lattice sum over one independent site
(~zx) and one energy denominator (Eq)™~(zx)™,
so that 7 Aw is independent of zx. Second, note
that the correction to the average libron excitation
energy is very large, viz., of order 15%, which
might be surprising in view of the smallness of the
static zero-point effects. This energy shift in-
volves anharmonicity which is essentially unrelated

(a) (b) (c)

FIG. 1. Diagrams representing lowest-order (in 1/2)
corrections to the unperturbed libron spectrum. Here
upward-going lines represent particles and downward-
going lines represent holes. Only (a) and (b) contri-
bute at zero temperature. Diagrams such as (c) do
not contribute at zero temperature.

to the other zero-point effects and which therefore
need not be small. Since this energy shift is quite
large, we are presently performing detailed calcu-
lations of the energy shifts of the individual libron
modes. Also, we expect that this strong anhar-
monicity is probably responsible for the anomalous
width of the highest-energy libron excitation ob-
served by Hardy et al.” Calculation of this effect
is also in progress.

V. DISCUSSION AND SUMMARY
A. Discussion

Let us now interpret the results of our calcula-
tions. It is clear from the Raman studies that
solid hydrogen is not described accurately by the
model which has been used. Either the crystal
structure is somewhat different from those we
have considered, or the model of rotational exci-
tations in a 7igid lattice is not valid.

In order to compare our calculations with the
experimental data, we therefore assume that two
of the observed lines in the Raman spectrum arise
from a single line in the rigid undistorted lattice.®
Presumably, then, when distortions or libron-
phonon coupling is taken into account the observed
spectrum may be reproduced. [Note added in
proof. The discussion in this section has become
obsolete. Since submission of this manuscript
further experimental data has been reported by
Nakamura. He has proposed that the lowest three
lines in the Raman spectrum should be associated
with the single libron modes. The remaining two
lines were attributed to two-libron processes,
although no reasonable mechanism was advanced.
We have used the anharmonicity to obtain such a
mechanism. Including anharmonic shifts as in
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TABLE IV. Raman intensities for the Pa3 structure.
Experimental® Theoretical®
Nearest- Nearest- All-
neighbor neighbor neighbor
Hy D, truncated full full
Frequency Relative Frequency Relative linear linear linear
em-1) intensity (em™) intensity theory® theory theory
6.1+0.5 1.00 8.3+0.5 1.00 1.00 1.00 1.00
7.1+0.5 0.18 10.3+0.5 0.34
}7.9:{:0.5d }0.23d }11.4:&0.5" }0.46" 0.413 0.300 0.317
10.8+0.5 0.05 14.4+0.5 0.12
14,8 £1.0 0.13 21.2+1.0 0.20 0.087 0.034 0.041
2See Ref. 7.

PTheoretical intensities are calculated from Eq. (57) assuming only EQQ interactions.
°Here truncated means that the terms in F' in Eq. (18) are dropped. These results were given in Ref. 7.
dAs discussed in Ref. 7, we combine the two middle-frequency lines for comparison with theory.

Eq. (68) we have obtained an excellent fit to the
entire five-line spectrum. The details of this
calculation will be published shortly. ] In Tables
IV and V, we compare the calculated and observed
intensities in this way. Note that for the C,,,.,
structure, the excitation at the lowest energy is
doubly degenerate. Accordingly it is necessary

to associate the two observed absorptions at lowest
energy with this excitation. As can be seen, the
correlation between the observed and calculated
intensities is rather poor for the C,,,, structure.
In particular, we find that creation of the highest-
energy libron mode in a Raman process is forbid-
den by symmetry for this structure. For the Pa3
structure, the situation is much better. Following
the symmetry argument of Hardy et al., " we have
associated the two absorptions at intermediate
snergy with the single excitation calculated on the
basis of the rigid-lattice model. As can be seen

from Figs. 2-5, the intensities calculated for the
Pa3 structure are indeed in much better agree-
ment with experiment than those calculated for the
Cmm Structure. Although this discussion is based
on calculations for which €;=¢€,=0, it is clear that
for small values of these parameters our results
should remain qualitatively valid.

Let us next discuss the frequencies of the libron
excitations. In fitting the observed Raman spec-
trum it is not reasonable to vary the parameters
€ and €, arbitrarily. Although we do not regard
the theoretical estimates as being conclusive, we do
not wish to invoke values of €, and €, which would
disturb the rather good agreement between theory
and experiment which is obtained for such quanti-
ties as the specific heat,3" (ap/97),,%**! or the
NMR spectrum.*? To make this discussion quanti-
tive note that the aforementioned experiments de-
pend most sensitively on (1) the rms value of the

TABLE V. Raman intensities for the C,,,, structure.

Experimental® Theoretical®
Nearest- Nearest- All-
neighbor neighbor neighbor
H, D, truncated full full
Frequency Relative Frequency Relative linear linear linear
(ecm=1) intensity (em™) intensity theory® theory theory
6.1+0.5 0.85\{ 8.3+0,¢ 0.75
}6.3i0.5d 1. 004 5}8.8&0.5" }1.00"‘ 1.00 1.00 1.00
7.1+0.5 0.15 10.3+0.5 0.25
10.8+0.5 0.042 14.4+0.5 0.09 1.00 0.680 0.542
14.8+1.0 0.110 21.2+1.0 0.15 Not allowed * * *
3See Ref. 7.

bTheoretical intensities are calculated from Eq. (57) assuming only EQQ interactions.

°Here truncated means that the terms in F’ in Eq. (18) are dropped.
dAs discussed in the text, we combine the two low-frequency lines for comparison with theory.
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FIG. 2. Fit to the Raman data of Ref. 7 for solid
H, assuming the C,,,, structure. The intensity is plot-
ted in the vertical direction. The reduced experimen-
tal data is the result of combining the experimental
lines (denoted expt) as in Tables IV and V, and the
arrows indicate the error range. The ‘“best” fit is
the best fit which can be obtained subject to the restric-
tion that |€y] <0.20 cm-!and le,| <0.20 em-!, The
exact fit is that which exactly reproduces the reduced
experimental data, The values (in cm-!) of the para-
meters used for the various fits are EQQ only: Ty
= 0.734; “best” fit: Teg =0.79, €, = 0,20, €y=— 0.20;
and exact fit: Tegy = 0.439, €, =0,742, € = 0,14, We
have indicated the forbidden transition in the C,,,;,

structure at high frequency (see Table V) by a vertical -
bar of ~ zero height.

energy
(Eems)?=Tr(H,;)?/Tr1

or (2) the energy AE of the first excited state of
the isolated pair of (J=1) molecules. It is there-
fore of interest to examine how strongly these
quantities depend on €, and €,. For AE, we have,
from Ref. 25,

AE= 4F0—1%(€0+ 2€g) y (69)

and we calculate that
B2, = " T3[1+(9¢3/125T%) + (18€3/175T9)] . (70)

These two quantities are quite insensitive to values
of € and €, of less than, say, 0.25. For example,
with

(€y/Tp) = (€5/T)=0.20 ,

the values of E%,, and AE are changed by less than
2% from the values they would have in the presence
of EQQ interactions only. Thus, using the crite-
rion that E%,, and AE should not be noticeably af-
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fected by the inclusion of non-EQQ interactions
(since the experimental results mentioned above
are adequately explained without employing such
interactions) does not allow us to make a very
definite prediction of the magnitude of (€,/T'y) and
(€,/Ty), except to state that (/T and (e/T) are
less than, say, 0.25.

One might imagine, then, that these parameters
would have no significant effect on the libron spec-
trum. This however, is not the case, as can be
seen from Tables II and III. Taking €;=€,=0 for
the G, Structure we obtain a very poor fit to the
data, as is apparent from Figs. 2 and 3. If one
admits nonzero values of these parameters, then
it is possible to obtain an exact fit to the frequen-
cies. The resulting values of €; and €, are un-
reasonably large, however. If €jand €, are re-
stricted to be at most 0.20 cm™! in magnitude,
then even the “best” fit (see Figs. 2 and 3) is un-
acceptable. Since assuming the C,,,, structure
involves not only taking anomalously large values
of €, and €,, but also fails to give an adequate fit
to the observed Raman intensities, we feel that
this structure is quite unlikely. This conclusion
is in agreement with the neutron-diffraction data
of Mucker et al.'

Let us therefore confine our attention to the
Pa3 structure. As can be seen from Figs. 4 and
5, a qualitative fit to the experimental data can be
obtained even in the absence of non-EQQ interac-
tions. It is seen, however, that the calculated
frequencies in this case do not agree perfectly
with experiment, the discrepancy being particu-

LA I N O O I B
D, RAMAN SPECTRUM Cmmm
Expt.
N — N
Reduced l
<S> <«
EQQ Only I |
"Best" I I
Exact I |
IR N AT NI O N N N B N A
10 15 20
Frequency (cm')
FIG. 3. Fitto the Raman data of Ref. 7 for solid

D, assuming the C,y, structure. For an explanation
see the caption of Fig. 2. Here the parameters are
EQQ only: Tt =0.78; “best” fit: Ty = 0.85, € =
—0.20, €,=-0.20; exact fit: Tgy, =0.66, €,=0.87,
€,=-0.28.
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FIG. 4. Fittothe Raman data of Ref. 7 for solid
H, assuming the Pa3 structure. For an explanation
see the caption of Fig. 2. Here the parameters are
EQQ only: Tgpy= 0.475; exact fit: Tgpy = 0.516, ¢,
=0,14, €,= 0,06,

larly noticeable for D,. By permitting small non-
zero values of €, and €;, we can reproduce the
“reduced” experimental spectrum exactly, as is
seen from Figs. 4 and 5.

Note that we have treated I'y as an adjustable
parameter, which we denote I'y,,;, since there
may be some uncertainties in the calculation of the
renormalization coefficient £, introduced in Eq.
(3). According to the renormalization calculations
cited in Table I, we expect that

Fexpt=ErotE0lo=ETy (71)

However, since the libron-libron interactions are
so strong, it is very important to consider their
effect on each mode separately, rather than in the
average way implied by the introduction of £, in
Eq. (68b). In view of this uncertainty, we do not
feel that a meaningful determination of €, or €, is
possible at present. Since these parameters do
influence the libron spectrum, it would be of in-
terest to plot out the libron spectrum via inelastic
scattering of neutrons. In this way it should be
possible todetermine allthe interactions accurate-
ly. As for the magnitude of £, from Figs. 4 and
5 we see that [y, =0.48 cm™ for Hp and Iy,
=0.64 cm™! for D,, so that experimentally, we
have

£=0.69 (72a)

for Hz s

(72b)

£=0.76 for D,

Considering the discrepancy between the theoreti-
cal estimates for £ in Table I and these experimen-
tal values, further investigation of these effects is
indicated.

(1Y)

B. Summary

We may summarize our work as follows: (i)
The Pa3 structure is a reasonable first approxi-
mation and an adequate fit to the Raman spectrum
can be obtained assuming only EQQ interactions.
(ii) The C,,. structure is quite unlikely, as nei-
ther the intensities nor the frequencies of the
Raman spectrum agree very well with experiment.
(iii) The determination of the magnitudes of the
non-EQQ interactions is not possible through the
thermodynamic measurements mentioned, and
hence such measurements do not establish the
smallness of these interactions. On the other
hand, the libron spectrum is much more sensitive
to these interactions. (iv) The effect of libron-
libron interactions on the frequencies of the ele -
mentary excitations has been calculated in an ap-
proximate way and energy shifts of order 15% have
been found. (v) When the above-mentioned libron-
libron interactions are taken into account, it is
found that current theoretical estimates of the re-
normalized EQQ interaction coefficient (¢T" differs
by about 10%from the experimental values.

Based on our work, we may indicate several
fruitful lines of investigation. First, since the
determination of the structure of solid hydrogen
is not yet complete, we suggest that further
study of the libron spectrum using inelastic
scattering of neutrons would be desirable. This
type of experiment would also enable a reason-
able determination of all the interactions be-
tween hydrogen molecules. Second, a better
calculation of the many-body effects on the EQQ

(TT l T 17T I T 177 I T
D, RAMAN SPECTRUM Paj
/\ N ~ N Epr.
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FIG. 5. Fit to the Raman data of Ref. 7 for solid
D, assuming the Pa3 structure. For an explanation see
the caption of Fig. 2. Here the parameters are EQQ
only: Tegpt = 0.640; exact fit: Tgyy = 0.744, €,=0.16,
€, =~0,13.
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interactions is needed, in order to make the
interpretation of the experiments more secure.
Along this line, it is important to study dynam-
ical libron-phonon interactions. Finally, we
are presently undertaking a detailed calculation
of libron-libron interactions so as to be able to
predict the energy shift and energy width of all
the zero-wave-vector modes due to these inter-
actions.
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APPENDIX A: LIBRATIONAL EXCITATIONS IN CLASSICAL
SYSTEMS

In this Appendix, we shall consider the libra-
tional excitations of a classical system with EQQ
interactions between molecules. From Eq. (5),
we obtain the potential energy of such a system in
the form

=2 2 v oror (A1)

ij mm'

where the y7/"' are defined in Eq. (9). We wish to
consider the small oscillations of the molecules
about their equilibrium orientations. For this pur-
pose it is convenient to introduce the direction
cosines (x;, y;, z;) of the molecular axis of the ith
molecule and expand the potential energy to second
order in the direction cosines x; and ¥;. In terms
of the direction cosines the spherical harmonics in
Eq. (Al) may be written

2o Sy iy)?, (A2a)
f1=—5z¢(xiiiyi) , (Azb)
0% =-5(322-1) , (A2¢)

Note that the direction cosines are not all indepen-
dent, but must satisfy

x2+92128=1, (A3)
We may use this relation to eliminate z; in favor of
x;and ;. In particular, when x; and y; are small,
we have

zy=1-3x%-39% . (A4)

By taking advantage in this way of the assumption

of small oscillations we obtain a much simpler
formulation than that of Ref. 18,

On expanding the potential energy in powers of
the direction cosines x; and ¥; and making use of
Eq. (A4), the quadratic terms, denoted V, are
found to be

& V=a ?(x%ﬂ;?) +4 %[yg (e +iy ) (v +iy ;)

+ (72)*(’5{ - iyi)(xj - iyj) +'Y%3-1(x¢ +iyi)(xj - iyj)

+ (Vi *0r — y)(ey + iy )

+739 (g +3y )2+ (AD* (v = i9,)7] (A5)
in close analogy to Eq. (18) for the quantum sys-
tem. The expression for the kinetic energy may
be written

T=312, (G2 +9)) (A8)

where I is the moment of inertia of the molecules,
and we have used Eq. (A4) to drop the terms in Z;.

From these expressions for the kinetic and po-
tential energies, the equations of motion for the
direction cosines are found to be

2451(56',+ij)'i)=—a(xi+iyi)+b(x,—iyi)

-8 EJ [(')’E)*(xj - iy,) + (V}_’f-l)*(xj + iy;)] ’ (A7a)

w1, =) =—ale;—iy;) +b(x; +iy,)
- Bz;j [')’Hi(xj +iyj) +'}’%}-1 (xj - iyj)] s (A7TDp)
where a and b are as defined in Eq. (18). As in

the quantum treatment it is convenient to introduce
spatial Fourier transforms by defining

x oK) = (s /N) /2 NE) X 3(a €Xp[= K Ry o] (A8a)
o

ya(lz)=(s/N)i/zj(E) Yy €XpL= 1K R;(ay] - (A8b)
o

Assuming harmonic time dependence, we may re-

write the equations of motion as

& 1w o (k) +iy o (k)

= a3 oK) +194 ()] - blx o (&) =iy o ()]
+ 8205y 1 (R)*[x (k) — iy (k)]
+8 v hst ®)*[xa(k) +iy,)] (A92)

o Tw?[x o (k) = iy o (&)]
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b, (&) +iy o (&)]

+82 57 L&) [xa®) + zys(k)]
+82574, l(k [xe(k)"lye(k)] (A9b)

In terms of vector notation, these equations are

ﬁzwa{‘P (k)} [al+bo +2F (K )]{Z/’:(lf;}, (A10)

=a[xoz(E) - iym(E)] -

¥-(K) -k

where the matrices I, o, and F(k) are defined in
Eq. (20), and the subvectors y* (k) and y-(k) are s-
dimensional vectors with components

=[2x &) iy k)], a=1,2-..,s.

For the Pa3 structure we have b=0, and it is
easily seen that the eigenfrequencies wgq for the
quantum system, given by Eq. (28) in the main
body of this paper, are proportional to those of
the classical system, w,;, given in Eq. (A10).
This scaling relation holds throughout the Brillouin
zone., For the C,,,, structure no such simple re-
lation obtains, because for this structure b is non-
zero, Even for the Pa3 structure note that the
correspondence is not the usual one between the
classical and quantum treatments of the harmonic
oscillator. In the usual correspondence, the fre-
quencies are identical, only the amplitudes differ,
since they are quantized in the quantum limit, As
mentioned in the text, the correct exact corres-
pondence is between the classical system and the
quantum systems for which B is much less than a
typical libron energy.

APPENDIX B: TABULATION OF 77" FOR P23 STRUCTURE

In this Appendix, we shall discuss the evaluation
and tabulation of the interaction coefficients 7}
for the Pa3 structure. For this purpose, we shall
enumerate several properties of these coefficients,
omitting proofs for economy of presentation.

The Pa3 structure is formed from a simple-cu-
bic Bravais lattice with a basis specified by the
four sublattice vectors 7, given in Table VI, so
that each unit cell contains four molecules. The
position of the ith molecule ﬁ, is given by

R,=R+%, , (Bla)

with R being a translation vector of the Bravais
lattice,

§=l§1+m52+n53, (Blb)

-> > -> . 24 .
where a,, a,, aj are the primitive translation vec-
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tors of the Bravais lattice and I, m, n are inte-
gers. The choice of 3, 3,, 23 is not unique and
they will be taken here as 3, =af, 8,=aj, and 2,
=aE, where a is the length of the cube edge and
i: f, £ are the unit vectors along the crystal axes.
From the discussion above we see that to spec-
ify the position of each molecule requires two la-
bels: one labeling the unit cell R and one labeling
the sublattice within that unit cell ¥,. In order to
display the relationship among the coefficients
y7" we define (within this Appendix only)

yrr=y (R, R)) =y R’ -R) , (B2)

with R;=R+7, and R,=R’+¥,. The notation is
taken to indicate that the interaction coefficients
vij are calculated between the jth molecule which
is on sublattice 8 in the R’th unit cell and the ith
molecule which is on sublattice ain the Rth unit
cell and R’~ R is the translation vector between
the unit cells.

Working in the “crystal” coordinate system of
Eq. (Blb) one can show that

(= D)™y " (o3 R) = (= )"y (- o3R)

=ya (= R)= Vi""(R) , (B3a)
(= D™y ™ (03 R + ak)*= (= 1)" 93" (= ak— o ;R )*

=vir (- R) =T (R), (B3b)
(= 1"y (@3 R)* = (= 1)"y3a (= 3 R)*

=it (- R) =y (R), (B3c)

where the operator o is defined as a reflection in
a plane perpendicular to 7:

-

o;R=R- 2420 R), (B4)

Taking the quantization axis along the local sym-
metry axis, one obtains directly the evaluation

TABLE VI. Position and equilibrium orientation of
sites.

B* Sublattice® Direction of z axis Direction of x axis

1 4a(0,0,0) [1,1,1] [1,1, —2]

2 %a(1,1,0) -1,1,1] [-1,1, ~2]

3  %a(0,1,1) (1, -1,1] (1, -1, -2]
4  %a1,0,1) 1,1, -1] [-1, -1, -2]

2Here B labels the sublattice
*Here a= V2 R,, where R, is the nearest-neighbor
separation.
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YIER) = 41A A, 20y €5 (R) oty [m/(2 +1)]1/2
xC(22J; m,n) Y "(R), , (B5)

where the subscript 1 indicates that the coordinate
system coincides with the symmetry axes of site
1. Similar relations hold when the script 1 is re-
placed by 2, 3, or 4, and the Yo "(R) can be re-
lated to i} (R) It is clear from these relations
that it suffices to tabulate y** (R).

By using the symmetry associated with the
threefold axis along the [111] directions, the num-
ber of independent coefficients can be reduced still
further. We find that

(- 1" ([®'FPR) exp[$mi(m - n)]

=yl (®'R) expl$milm—n)] =¥ R) , (B6)
where
R'( A7 +Bf +CE) =Ci+Af +BE (B7)

is a rotation about the crystal [111] d1rect1on.
Thus it is only necessary to tabulate -yi”"(R) and
y(R), Infact, in this tabulation R can be limited
to the first quadrant, R, >0, R, =0, in view of the
relations

Y=yl i Ryy=-Ry , (B8a)
ViR (R)* =3 (0;R-al) . (BSb)

We shall tabulate the y7%(R) for EQQ interactions
only between nearest neighbors. Then iy m(R) = 0
and yis "(R) is given in Table VII. From this tabu-
lation, all nonvanishing y7; can be determined by
the followmg procedure: (a) Complete the tabula-
tion of y{3'(0) by using yi3"~"(0) = [yz'(0)]*. (b)
Evaluate the other nonvanishing {3 "(R) for near-
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Eq. (B3). We have verified that the tabulated val-
uses satisfy the sum rule

EI‘V '(0)/AnA, |*= B0 2213 (B9)

which can be derived using the orthogonality re-
lations of the spherical harmonics and rotation
matrices.

The values of y7; can also be used to calculate
the moments of the frequency distribution I, which
are defined as

I,= (8N)"EZ> [, &)/a]" .

(B10)

From Eq. (28), we see that for the Pa3 structure
(where b =0)
Z [fw,®)/a]"=Tr{I+ 22 F&)]"/?  (Blla)
» B

-

=Tr[I+na?F(k)+...], (Bllb)

so that I, can be evaluated in terms of traces of
powers of F(k), or equivalently, as sums over
¥i;. Since these sums are again series in the pa-
rameter 1/z, we truncate them at the lowest non-
trival order:

(&)t o (M)”

En a
— e 2
=1+-———"(1’2N2) ?T:«(fg‘_)) (B12)

For nearest-neighbor EQQ interactions only,
a=19T,, and we may use the values of Table VII
for v7f. Then we find the numerical results

est-neighbor interactions, i.e., for R=a(~-1,0,0), I,,=1.0000 (1. 0000) , (B13a)
R=a(0,-1,0), and R= a(- 1,-1,0) from Eqs.
, ., =0.9835 (0.
(B8a) and (B8b). (c) Compute 'y;'"' by usmg Eq. L.,=0.9835(0.9832) , (B13b)
(B6). (d) Complete the tabulation of yg; by using =1, 0000 (1. 0000) , (B13c)
TABLE VII. Values® of v;,™"(0) for the Pa3 structure with nearest-neighbor EQQ interactions.
m/n 2 1 ‘ 0
2 (—0.6737, —0.4811)° (—0.6678, 0.2041)° (—0.3194, 0.1925)°
1 (=1.5517, —0.2040) (-0.5556, 0.2405) (—0.6678, —0.1361)
0 (—0.7360, 0.7697) (—=0.0786, —0.5443) (-=0.5277, —0.0000)
-1 (- 0.6088, —03401) ( 0.7777, 0.1443) (—0.6678, 0.1361)
-2 {—0.0070, —0.2886) ( 0.2750, 0.3402) (—0.3194, —0.1925)

awe tabulate values of 4y7§(0)/T.
bHere (x,y) denotes x +iy.

For n<0, it is necessary to use the relation y{5(0)* =yi5»="(0).
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I.;=1.0494 (1.0543) , (B13d)
I,=1.1318 (1.1541) . (B13e)

For comparison we have also included in paren-
thesis Raich and Etter’s corrected values.*® Note
that our results, correct to lowest nontrivial or-
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der in 1/z are in excellent agreement with their
values which were obtained by performing sums
over the Brillouin zone. It is also quite clear that
the effects of further neighbors are negligible in
low-order perturbation theory. This is because
the summands in Eqs. (61), (62), (67), and (B12)
vary with separation as (Ry/R).'°

*Work supported in part by the Office of Naval Research,
National Science Foundation, and the Advanced Research
Projects Agency.
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